
Lab 7:
THE MICHELSON INTERFEROMETER (2 Lab Periods)

Objective Calibrate a Michelson interferometer and use it in various applications.

References Hecht, section 9.4; Universal Interferometer – An Experimental Handbook

In this set of experiments you will make the following observations and measurements:
• Observe Fizeau and Haidinger fringes for quasi-monochromatic light.
• Observe white-light fringes.
• Calibrate the interferometer’s micrometer drive.
• Measure the separation, Δλ, of the sodium D lines (yellow doublet).
• Observe the qualitative difference between the interferograms of light from a Hydrogen 

gas discharge lamp and light from a HeNe Laser.
• Measure the characteristics of a bandpass filter.

I.  Equipment
• Ealing Universal Interferometer, set up as a Michelson interferometer
• Hydrogen discharge lamp
• Red glass or plastic filter; narrow band-pass interference filter
• Tensor lamp (or other suitable white light source)
• He-Ne laser

II.  LAB SAFETY:
• Do not look into the Laser beam. Eye injury and blindness may result.
• If you overheat the filters, they may crack. Use the Tensor lamp on its lowest power 

setting!

III.  Procedure

A. Initial Observations of Interference Fringes

Using either a hydrogen or deuterium lamp as a convenient source of quasi-monochromatic light, 
adjust the interferometer until you observe interference fringes. Viewing the fringes directly (you 
do not need a telescope), obtain both circular (Haidinger) and straight (Fizeau) fringes, and be 
sure that you understand clearly the adjustments that must be made to obtain fringes of each 
type. You may find it helpful to use a red glass filter here. Why is this so?

Think carefully  about the requirements for the observation of white-light fringes, and, using 
quasi-monochromatic light, adjust the interferometer as close as possible to the configuration for 
observing white-light fringes. Then substitute an incandescent lamp  for the quasi-monochromatic 
source. You should now be able to find the white-light fringes with only very slight additional 
adjustments. Make these final adjustments very slowly and delicately. Show your white-light 
fringes to the instructor and explain the procedure by which you found them. Record the proce-



dure in your laboratory book. Record the reading of the micrometer drive on the movable mirror 
for the position that gives white-light fringes.

B. Calibration

The micrometer drives the movable mirror through a lever arm. Although the micrometer can be 
read precisely, this reading cannot be directly  translated into mirror motion unless you know the 
exact reduction factor of this lever arm. Instead, by counting the number of fringes that pass 
through the field of view for a given micrometer motion the micrometer readings can be cali-
brated in terms of the wavelength λ of a known spectral line. The passage of one fringe corre-
sponds to a change in optical path length of one wavelength.

For the Michelson interferometer you are using, answer the question: How far must the mirror 
travel to produce a change of one wavelength in the optical path?

Use the Balmer α line in hydrogen for calibration (the red line with λ = 656.28 nm that derives 
from the transition between the principal quantum numbers n = 3 and 2). A result accurate to 
about 1% can be obtained if two partners independently count about 300 fringes. Because this is 
a tedious process, you may want to count six groups of 50 fringes. It  may be helpful if each part-
ner makes two independent counts. Some students have found it easier to carry  out this part of 
the experiment by using a television camera to display the fringes on a monitor.

C. Study of Spectral Lines, Visibility Curves and Interferograms

In general, spectral lines have both width and structure. As you know from an earlier experiment, 
the yellow D lines in sodium vapor are a doublet  with Δλ/λaverage ~ 10–3. The structure of the spec-
trum of a particular source can be described by a spectral distribution function, defined as the 
intensity as a function of wavelength I(λ) which can be determined with an optical interferome-
ter. One first measures the interferogram: the intensity of the interference pattern as a function of 
optical path difference between the two mirrors. The spectral distribution function is then propor-
tional to the Fourier transform of the interferogram.

Michelson interferometers are routinely  used in infrared spectroscopy. The mirror displacement 
is under the control of a computer which determines the spectral distribution function from the 
interferogram using a Fast Fourier Transform (FFT) algorithm.

In distinction, in this part of the lab, we will use a “barefoot  approach”: If the spectral distribu-
tion function is not too complicated, much can be learned from the simpler technique of observ-
ing changes in the visibility (or contrast) of the interference fringes. This can be understood from 
the following simple argument: Suppose the source spectrum consists of two spectral lines of 
equal intensity whose wavelengths are, respectively, λ’ and λ, with Δλ = λ’ – λ > 0 that is small 
compared with λ. The observed fringe pattern from the doublet will be an incoherent superposi-
tion of the individual fringe patterns from the two spectral lines. It  will have maximum visibility 
when the dark fringes for one wavelength essentially coincide with the dark fringes for the other. 
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Suppose that the m’-th order dark fringe from λ' coincides exactly  with the mth order dark fringe 
from λ at  θ = 0 when the mirror separation is d and the optical path difference is 2d. Assuming 
that the beam splitter is a dielectric mirror, so that 2d = mλ gives dark fringes, we can write

m’λ’ = mλ = 2d (7.1)

Noting that λ < λ’, we see that m = m’ + k, where k is a positive integer. We do not, however, 
know any  of the values of m, m’, or k. Dark fringes from adjacent orders from λ’ will also be in 
near (although not exact) coincidence with dark fringes from λ, and the fringe pattern will have 
maximum visibility. Suppose this maximum visibility is found for an optical path difference 2d1.

Then using 2d1/λ = m and 2d1/λ’ = m’, and combining these expressions with m = m’ + k, we can 
write

2d1/λ = 2d1/λ’ + k  (7.2)

Because the wavelengths differ slightly, the two sets of fringes will move at slightly different 
rates as the optical path difference between the two mirrors is varied. If we start from a position 
of maximum fringe visibility and vary d slowly, we will eventually  reach a mirror position for 
which the dark fringes from one wavelength essentially coincide with the bright fringes from the 
other wavelength, giving a superposed fringe pattern of almost uniform brightness, with mini-
mum visibility.

Further variation of the optical path difference will again lead to a fringe pattern having maxi-
mum visibility. Suppose maximum visibility  is next found for an optical path difference 2d2. The 
difference between m and m’ will have increased by 1 between adjacent positions of maximum 
visibility: m = m’ + (k + 1). We can then write

2d2/λ = 2d2/λ’ + (k + 1) (7.3)

Combine these two expressions to show that 

Δλ = λ2/2(d2 – d1) (7.4)

if Δλ = λ’ – λ is small compared with λ. Apply  this results to a measurement of the splitting of the 
Na D doublet.

Questions that you should consider in making these measurements:
(1) Should you measure the change in optical path between adjacent  visibility maxima or be-
tween adjacent  visibility  minima? Observe the variation in visibility around a minimum and 
around a maximum. Which do you think you can locate more precisely?
(2) Do you need to start your measurements from the mirror position that gives zero path differ-
ence?
(3) Do you have to count fringes for this measurement?
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D. Interferograms of Single Spectral Lines

If a line is Doppler broadened by the distribution of thermal velocities, we expect its profile to be 
a Gaussian that varies with frequency ν according to

 
(7.5)

with
  

(7.6)

where M is the mass of the emitting atom and T is the absolute temperature of the gas. If the line 
is pressure broadened, the line shape and width are given by  different expressions, but for our 
laboratory sources you may assume that Doppler broadening is the dominant contribution to the 
line width.

An expression for the visibility curve of a Gaussian spectral line is given in the supplementary 
notes at the end of this document. Observe the interferogram of the Balmer α line (λ = 656.3 nm) 
from a hydrogen lamp. A red glass filter may also be helpful here. Can you detect any significant 
variation in the fringe visibility as the mirror is moved away from zero path difference? If so, 
estimate the spectral width Δν of the line; if not, estimate an upper bound for the value of Δν.

Illuminate the interferometer with the light from a He–Ne Laser and observe the fringe pattern 
projected on a screen. The Laser is considered a highly  coherent source with a very narrow spec-
tral width. Is this confirmed by  your observations? The theoretical value for the Laser spectral 
width is given by

 
(7.7)

where h is Planck's constant, Δνthermal is the Doppler width given above, and P is the output 
power which is of the order of one milliwatt for the HeNe Lasers. Estimate the excursion of the 
interferometer mirror required to observe the spectral width of the Laser emission. Remember 
that it is a neon atom emitting.

For these measurements, do you need to start from the mirror position that gives zero path differ-
ence?
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E. Determination of the Band-Pass Characteristics of a Filter

One can determine the band-pass characteristic of a filter by illuminating it with white light and 
observing the interferogram in the same way that we observed the width of a spectral line. The 
optics laboratory has a number of reasonably narrow interference filters. Although we may  not 
necessarily know the details of the spectral transmission of these filters, we do have the manufac-
turer’s specifications of the bandwidth and center wavelength for each. If the spectral transmis-
sion is Gaussian it may be described in the same manner as the profile of a Doppler-broadened 
spectral line, and its transmission T may be written as:

 
(7.8)

with a frequency  bandwidth Δν designed by the manufacturer. Note that the filter manufacturer 
actually specifies λ0 and Δλ rather than ν0 and Δν. Choose a filter from our collection and, assum-
ing that it  has Gaussian transmission, observe its interferogram and determine its bandwidth. 
Your result may differ somewhat from the manufacturer's specifications if the filter transmission 
is not Gaussian. Compare your measurement with the specifications and try  to account for any 
discrepancies.
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APPENDIX: Visibility of a Gaussian Spectral Line

In the experiment on the interferogram of a single spectral line, you need to know the expression 
for the visibility. We present the result here without derivation. This result is also appropriate for 
the situation of an interference filter with a Gaussian transmission characteristic.

Consider a single spectral line with a Gaussian spectral intensity distribution:

 
(7.9)

The quantity Δν, which is a measure of the width of the intensity distribution, is assumed to be 
much less than ν0, the center frequency. The intensity I(ν), whose maximum value occurs at ν = 
ν0, is reduced to 1/e ≈ 0.3679 of its maximum value when ν = ν0 ± Δν/√π.

The visibility of the fringes from this spectral line is given by

 (7.10)

where the retardation time τ is defined as τ = 2d/c, and d is the displacement of the movable mir-
ror from its location for zero-path-difference. Note that the retardation time is just the time for 
light to travel the path difference 2d. A narrow spectral line (small Δν) requires a large value of τ 
(and therefore of d) to reduce the visibility significantly. If you recall that the Fourier transform 
of a Gaussian is another Gaussian it  is not surprising that the visibility  function is proportional to 
the Fourier transform of the spectral distribution of the intensity.

According to Michelson (see Hecht section 12.2) the visibility can be written as

 
(7.11)

where I is the intensity. V can then be determined from a visual estimate of the ratio Imin/Imax.
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